

Metabolism
Clinical and Experimental

Metabolism Clinical and Experimental 59 (2010) 305-313

www.metabolismjournal.com

Enhanced levels of soluble CD40 ligand and C-reactive protein in a total of 312 patients with metabolic syndrome

Ilkay Tugba Unek^{a,*}, Firat Bayraktar^b, Dilek Solmaz^a, Hulya Ellidokuz^c, Faize Yuksel^d, Ali Riza Sisman^e, Sena Yesil^b

^aDepartment of Internal Medicine, Dokuz Eylul University School of Medicine, 35340 Inciralti, Izmir, Turkiye

^bDivision of Endocrinology and Metabolism, Dokuz Eylul University School of Medicine, 35340 Inciralti, Izmir, Turkiye

^cDepartment of Public Health, Dokuz Eylul University School of Medicine, 35340 Inciralti, Izmir, Turkiye

^dDivision of Hematology, Dokuz Eylul University School of Medicine, 35340 Inciralti, Izmir, Turkiye

^cDepartment of Biochemistry, Dokuz Eylul University School of Medicine, 35340 Inciralti, Izmir, Turkiye

Received 26 December 2008; accepted 23 April 2009

Abstract

The metabolic syndrome (MS) is associated with a systemic inflammatory response that plays an important pathogenetic role in atherothrombotic disease. Increasing evidence indicates that CD40-CD40 ligand interactions constitute an important mediator for vascular inflammation. The purpose of this study was to assess whether high-sensitivity C-reactive protein (hs-CRP) and soluble CD40 ligand (sCD40L) levels were increased in patients with MS. During the study period from January 2004 to August 2004, 312 patients with MS and 98 control subjects were included. Anthropometric measurements, blood pressure assessment, electrocardiography, and blood measurements including fasting blood glucose, postprandial blood glucose, total cholesterol, low-density lipoprotein cholesterol, highdensity lipoprotein cholesterol, triglyceride, glycated hemoglobin, white blood cell (WBC), platelets, hs-CRP, and sCD40L were performed. Patients with MS were divided into 3 groups based upon their glucose tolerance (group 1, normal glucose tolerance; group 2, prediabetic group; and group 3, diabetes mellitus). Patients with MS showed a significant increase of WBC, hs-CRP, and sCD40L levels compared with control subjects. The levels of both hs-CRP and sCD40L were positively correlated with body mass index (BMI). Highsensitivity CRP levels were also positively correlated with waist circumferences, fasting blood glucose, postprandial blood glucose, and glycated hemoglobin, and negatively correlated with high-density lipoprotein cholesterol. In patients with MS, both hs-CRP and sCD40L levels were positively correlated with WBC count. We found a positive correlation between sCD40L and platelets. Among the subgroups of patients with MS, the mean levels of WBC, hs-CRP, and sCD40L did not show any significant differences. In conclusion, elevated levels of WBC, hs-CRP, and sCD40L in MS patients provide further insight into the relationship between MS and inflammation. In our study, positive correlations between BMI and both hs-CRP and sCD40L levels suggest that BMI is an important determinant of a chronic inflammatory state in patients with MS. Moreover, this study reports significantly increased levels of WBC, hs-CRP, and sCD40L not only in diabetic subjects with MS but also in prediabetic subjects and nondiabetic subjects with MS compared with control subjects. Our data suggest that MS patients have proinflammatory state independent of their glucose tolerance status. In our study, the positive correlation between the levels of sCD40L and platelets in patients with MS supports previous reports indicating that sCD40L are derived predominantly from platelets.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

The metabolic syndrome (MS), also known as the *insulin* resistance syndrome, is associated with increased risk for

cardiovascular disease (CVD); and the risk is greater than the risk associated with any of the individual components [1-3]. The recently released "Third Report of the National Cholesterol Education Program Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults" (NCEP Adult Treatment Panel III [ATP-III]) stresses the importance of targeting prevention strategies for such individuals. The ATP-III guideline also suggests a working

^{*} Corresponding author. Tel.: +90 2324124801; fax: +90 2322772303. E-mail address: tugba.gun@deu.edu.tr (I.T. Unek).

definition of the MS that includes the presence of at least 3 of the following characteristics: abdominal obesity, elevated triglycerides (TG), reduced levels of high-density lipoprotein cholesterol (HDL-C), high blood pressure, and high fasting glucose (FG) [4].

Insulin resistance is the underlying metabolic disturbance in MS [1-3]. Although both hereditary and environmental factors contribute to the development of the insulin resistance, little is known about the underlying pathogenetic mechanisms [5-7]. Insulin resistance is increasingly recognized as a chronic, low-level, inflammatory state [8]. Several mechanisms may explain the relation between chronic inflammation and insulin resistance. These include hypersecretion of proinflammatory cytokines from adipose tissue, which exert major stimulatory effects on the synthesis of acute-phase proteins. In addition, enhanced expression of inflammatory proteins may occur by counteracting the physiologic effect of insulin on hepatic acutephase protein synthesis as a result of decreased insulin sensitivity [9]. Serum high-sensitivity C-reactive protein (hs-CRP) is the principal mediator of the acute-phase response. High-sensitivity CRP levels are elevated in many inflammatory disorders and have been used to predict clinical outcomes. High-sensitivity CRP is not only a marker of inflammation, but also an amplifier of it. A number of epidemiologic studies have shown that CRP is an important risk factor for atherosclerosis and coronary heart disease (CHD) [10-15]. Ridker et al [16] reported that measurement of CRP adds clinically important prognostic information concerning future vascular risk. In literature, a positive correlation between the level of CRP and all of the components of the MS was reported [16,17]. Besides the classic inflammatory markers, CD40 ligand (CD40L), being a transmembrane protein and member of tumor necrosis family, was introduced as a new inflammatory marker. It has been identified on T-helper cells, platelets, and vascular smooth muscle cells [18]. Studies on the cellular distribution of CD40L indicate that more than 95% of the circulating CD40L exist in platelets. Platelets express CD40L on their surface upon stimulation; CD40L is then cleaved and circulates as soluble CD40L (sCD40L). When expressed on the surface of platelets and exposed to CD40-bearing vascular cells, platelet-associated CD40L is capable of initiating various inflammatory responses [19-21]. Increasing evidence shows that CD40-CD40L interaction plays a crucial role in the pathogenesis of atherosclerosis and CHD [19,21,22]. Atherosclerosis and insulin resistance share a common inflammatory basis [8]. In literature, enhanced levels of CD40L were reported in patients with hypercholesterolemia, obesity, diabetes mellitus (DM) [23-30], and acute coronary syndromes [31-34]. There is evidence that the sCD40L level is a strong predictor of cardiovascular risk [35].

Few studies have reported the relationship between MS and sCD40L [36-39]. Therefore, this study was conducted to assess whether sCD40L levels were increased in patients

with MS. To our knowledge, this study represents the investigation of hs-CRP and sCD40L levels in the largest series of patients with MS.

2. Methods

2.1. Patients and controls

Patients were recruited from the Department of Internal Medicine at the Dokuz Eylul University Faculty of Medicine Hospital. During the study period from January 2004 to August 2004, 312 patients with the diagnosis of MS were included. A total of 98 individuals participated in this study as control subjects. All subjects gave written informed consent, and the study protocol was approved by the Local Ethical Committee of Dokuz Eylul University. A standardized health questionnaire was completed by a physician covering the subjects' medical history and including current medication and information about other diseases (particularly hypertension, CHD, and myocardial infarction). Coronary heart disease was defined as using nitroglycerine, experiencing typical chest pain, or having a history of previous myocardial infarction. This information was validated against electrocardiogram changes compatible with ischemic heart disease. All subjects underwent anthropometric evaluation. Height, weight, and waist and hip circumferences were recorded with subjects wearing light clothing and without shoes. Body mass index (BMI) was calculated as the weight in kilograms divided by the height in meters squared. Waist circumference was measured at the natural indentation between the 10th rib and the iliac crest (minimum waist). Hip circumference was measured over the widest part of the gluteal region, and the waist-to-hip ratio (WHR) was calculated as a measure of central obesity. Arterial blood pressure was measured on the right arm with the subjects in a sitting position and after a 5-minute rest, using a mercury sphygmomanometer.

2.2. Definition

Patients with 3 or more of the following attributes are typically defined as having the MS based on the NCEP ATP III guidelines [4]: (1) TG of at least 150 mg/dL, (2) HDL-C less than 40 mg/dL in men or less than 50 mg/dL in women, (3) systolic blood pressure (SBP) of at least 130 mm Hg or diastolic blood pressure (DBP) of at least 85 mm Hg, (4) abdominal obesity as defined by a waist circumference greater than 88 cm (35 in) in women or greater than 102 cm (40 in) in men, and (5) abnormal glucose metabolism as defined by an FG of at least 110 mg/dL. Those without these features or patients who have only hypertension were designated as control subjects. Diabetes mellitus, impaired glucose tolerance (IGT), and impaired FG were diagnosed according to the World Health Organization criteria [40]. Fasting was defined as no caloric intake for at least

Table 1 Characteristics of study participants

	No MS	MS	P
	n = 98	n = 312	
Sex (M/F)	21/77	118/194	.003ª
Age (y)	52.04 ± 10.31	55.13 ± 9.93	.008
Smoking	27	57	.226a
CVD	0	63	.000°
HT, n (%)	36 (36.7)	286 (92)	.000a
BMI (kg/m^2)	25.45 ± 3.16	30.86 ± 5.47	.000
Female	25.34 ± 3.35	32.05 ± 5.45	.000
Male	25.85 ± 2.33	29.13 ± 4.17	.000 ^b
Waist (cm)			
Female	79.14 ± 6.50	96.67 ± 10.13	.000
Male	91.57 ± 6.35	101.43 ± 9.32	.000
WHR	0.82 ± 0.08	0.90 ± 0.07	.000
SBP (mm Hg)	120.40 ± 13.29	129.34 ± 15.49	.000
DBP (mm Hg)	77.19 ± 9.16	80.38 ± 8.81	.002
FG (mg/dL)	90.05 ± 6.81	122.58 ± 39.27	.000
PPG (mg/dL)	98.56 ± 20.86	156.86 ± 68.96	.000
TC (mg/dL)	193.73 ± 31.34	196.06 ± 38.77	.590
TG (mg/dL)	90.77 ± 24.34	176.20 ± 102.06	.000
LDL-C (mg/dL)	112.94 ± 25.55	114.82 ± 32.87	.556
HDL-C (mg/dL)	64.43 ± 14.00	47.56 ± 11.80	.000
Female	66.68 ± 11.81	49.85 ± 12.04	.000
Male	56.19 ± 18.14	43.80 ± 10.41	$.000^{ m b}$
HbA _{1c} (%)	5.50 ± 0.49	6.79 ± 1.60	.000
WBC (×1000/mm ³)	6.54 ± 1.51	7.90 ± 2.22	.000
Platelets	262.88 ± 60.30	270.13 ± 77.64	.364
Use of ACEIs/ARBs	19	172	.000a
Use of ASA	11	129	.000 ^a
hs-CRP (mg/L)	2.03 ± 1.88	4.48 ± 4.92	.000
sCD40L (ng/mL)	0.44 ± 0.42	0.86 ± 0.73	.000

Data are mean ± SD. HT indicates hypertension.

8 hours. *Postprandial glucose* (PPG) was defined as blood glucose measurement 2 hours after a standard meal. Subjects taking insulin or oral antidiabetic drugs were considered to have diabetes. The major exclusion criteria were as follows: asthma/chronic obstructive pulmonary disease, chronic congestive heart failure, rheumatologic disease, renal or hepatic dysfunction, cancer, and use of antiinflammatory therapy or immunosuppressants.

2.3. Blood sampling and assay

Subjects underwent complete blood count and routine biochemical evaluations including FG, PPG, total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), HDL-C, TG, and glycated hemoglobin (HbA_{1c}). All blood analyses were performed in a central laboratory. Triglycerides, TC, and HDL-C were measured on Roche Diagnostics Modular Analytics-DP analyzer (Roche Diagnostics, Tokyo, Japan) with the dedicated kits (Roche Diagnostics, Mannheim, Germany). The LDL-C concentrations were estimated according to Friedewald formula at concentrations of TG less than 400 mg/dL. The direct LDL-C analysis was performed on a Roche Diagnostics Modular Analytics-DP

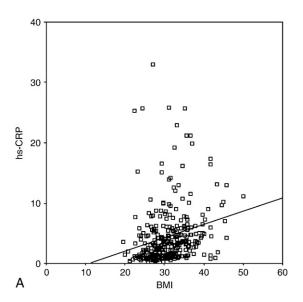
analyzer at concentrations of TG of at least 400 mg/dL. Glycated hemoglobin was measured on a Cobas Integra 400 Plus analyzer with a dedicated kit (Tina-quant Hemoglobin A_{1c} Gen 2; Roche Diagnostics, Mannheim, Germany). Fasting venous blood samples (10 mL) were drawn from the antecubital vein into pyrogen-free blood collection tubes without any additives. All blood samples were collected under minimal tourniquet pressure. Blood samples were allowed to clot for 15 to 30 minutes and were centrifuged at 1500g and 4°C for 10 minutes. The plasma was then separated and stored at under -20°C until analysis. Samples were thawed only once. Serum sCD40L concentrations were determined using an enzyme-linked immunosorbent assay kit from Biosource (Bender MedSystems Human sCD40L Instant ELISA). The intraassay and interassay coefficients of variation for sCD40L were 5.00% and 6.20%, respectively, with a sensitivity of 0.062 ng/mL, according to the manufacturer. The hs-CRP analysis was performed on a Cobas Integra 400 Plus analyzer (Roche Diagnostics, Rotkreuz, Switzerland) based on particle-enhanced turbidimetry (CRPLX; Roche Diagnostics, Mannheim, Germany) with a detection limit of 0.085 mg/L and an extended measuring range of 0.085 to 1600 mg/L (with auto rerun) according to the manufacturer.

2.4. Statistical analysis

All statistical analyses were performed with an SPSS program for Windows (version 10.0; SPSS, Chicago, IL). Means and proportions for baseline variables were compared between cases and controls using Student t test, correlation test, analysis of variance for continuous variables, and nonparametric Kruskall-Wallis, Mann-Whitney U test when appropriate. Differences in categorical variables were measured by χ^2 test.

Table 2
Pearson correlation test between hs-CRP/sCD40L and all other parameters evaluated in MS patients

Variable	hs-CRP		sCD40L	
	r	P	r	P
Age (y)	0.00	.932	-0.04	.414
BMI (kg/m ²)	0.23	.000	0.14	.017
Waist (cm)	0.19	.001	0.06	.296
WHR	-0.03	.599	-0.05	.415
SBP (mm Hg)	0.03	.658	0.02	.737
DBP (mm Hg)	0.005	.402	-0.05	.345
FG (mg/dL)	0.13	.026	0.04	.523
PPG (mg/dL)	0.14	.018	0.05	.362
TC (mg/dL)	0.02	.688	0.04	.529
TG (mg/dL)	0.09	.127	-0.30	.641
LDL-C (mg/dL)	0.03	.573	0.04	.462
HDL-C (mg/dL)	-0.14	.016	0.00	.963
HbA _{1c} (%)	0.20	.001	0.02	.695
WBC (×1000/mm ³)	0.15	.011	0.13	.034
Platelets	0.09	.099	0.19	.001


a χ^2 .

^b Mann-Whitney *U*.

Table 3
Stepwise multiple regression analysis with hs-CRP and sCD40L as the dependent variable in patients with MS

Variable	В	SE	Coefficient β	P
hs-CRP				
Constant	-7.95	2.26		.001
BMI	0.23	0.05	0.24	.000
HbA_{1c}	0.78	0.18	0.25	.000
sCD40L				
Constant	0.37	0.15		.016
Platelets	1.847E-0.3	0.00	0.19	.001

All data of continuous variables were expressed as mean \pm SD; P values of .05 or less were considered to be statistically significant.

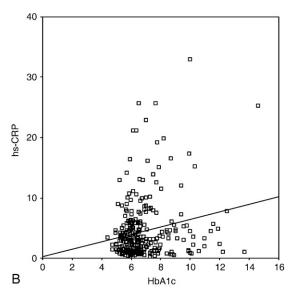


Fig. 1. A, Positive correlation between hs-CRP and BMI in MS patients. B, Positive correlation between hs-CRP and HbA_{1c} in MS patients.

3. Results

The clinical and biochemical characteristics of the 410 subjects, aged 27 to 81 years, with and without MS, are summarized in Table 1. The hs-CRP and sCD40L concentrations were statistically significantly higher in patients with MS compared with control subjects (P = .000 and P = .000, respectively). The analysis of leukocyte count disclosed a statistically significant difference between patients with MS and controls (P = .000). The rate of male patients was significantly higher in the MS group than the control group, and patients with MS were older than controls. The number of patients with CVD was statistically significantly higher in the MS group than the control group (P = .000). As expected, the values of BMI, waist circumferences, WHR, SBP, DBP, FG, PPG, TG, and HbA_{1c} were significantly higher and the levels of HDL-C were significantly lower in MS patients compared with controls (Table 1).

We observed no association of hs-CRP (P = .890) and sCD40L (P = .440) with sex in controls. However, women with MS had statistically significantly higher values of hs-CRP $(5.08 \pm 4.95 \text{ vs } 3.50 \pm 4.74, P = .006)$ than men with MS. In addition, women with MS had higher values of sCD40L than men; but the difference did not reach statistical significance (0.92 \pm 0.79 vs 0.77 \pm 0.60, P = .101). In the MS group, both hs-CRP and sCD40L concentrations were not significantly different (P > .05) in patients with CVD compared with patients without CVD (4.35 \pm 5.9 vs 4.51 \pm 4.65 mg/L and $0.82 \pm 0.70 \text{ vs } 0.87 \pm 0.73 \text{ ng/mL}$, respectively). Similarly, both hs-CRP and sCD40L concentrations were not significantly different (P > .05) in smoking patients with MS compared with nonsmoking patients with MS $(4.56 \pm 4.07 \text{ vs } 4.01 \pm 4.58 \text{ mg/L} \text{ and } 0.82 \pm 0.55 \text{ vs})$ 0.86 ± 0.78 ng/mL, respectively).

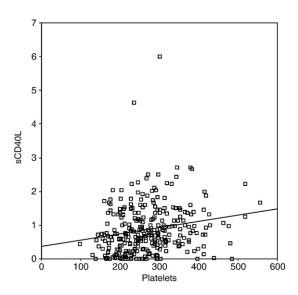


Fig. 2. Positive correlation between sCD40L and platelets in MS patients.

Table 4
The mean levels of hs-CRP and sCD40L according to medications

Medications	hs-CRP	P	sCD40L	P
ASA				
Yes	4.51 ± 5.70		0.85 ± 0.66	
No	4.48 ± 4.31	.955	0.87 ± 0.77	.880
Lipid-lowering	therapy			
Yes	4.52 ± 5.35		0.84 ± 0.66	
No	4.44 ± 4.46	.886	0.88 ± 0.79	.641
ACEIs/ARBs				
Yes	4.59 ± 4.56		0.96 ± 0.82	
No	4.08 ± 4.65	.590	0.77 ± 0.50	.245
Antidiabetics				
Yes	4.71 ± 5.49		0.89 ± 0.66	
No	4.31 ± 4.46	.474	0.84 ± 0.77	.621

Data are mean \pm SD.

We observed no association of hs-CRP (r = 0.09, P =.346) and sCD40L (r = -0.06, P = .65) with age in controls. Similar findings were observed in subjects with MS (Table 2). In MS patients, hs-CRP levels were positively correlated with BMI, waist circumferences, FG, PPG, HbA_{1c}, and WBC, and negatively correlated with HDL-C. Similarly, in MS patients, sCD40L levels were positively correlated with BMI, WBC, and platelets (Table 2). To further define the relationship between MS and both hs-CRP and sCD40L, stepwise multiple linear regression analysis was determined. In this analysis, hs-CRP was correlated with BMI and HbA_{1c} (Table 3; Fig. 1A, B); and sCD40L was correlated with platelets (Table 3, Fig. 2). However, we observed no association of sCD40L (r = 0.05, P = .687) with platelets in the control group. We investigated the influence of acetylsalicylic acid (ASA), angiotensin-converting enzyme inhibitors (ACEIs)/angiotensin receptor—I blocking agents (ARBs), lipid-lowering therapy, and antidiabetics on hs-CRP and sCD40L concentration. No significant difference was found in the levels of hs-CRP and sCD40L among MS patients with or without these medications (Table 4).

Patients with MS were divided into 3 groups according to their glucose tolerance (group 1, normal glucose tolerance; group 2, prediabetic group; and group 3: type 2 DM). The prediabetic group was composed of patients with IGT and impaired FG. Among the subgroups of patients with MS, the mean levels of hs-CRP and sCD40L were not statistically significantly different (Table 5). As shown in Table 5, the mean age was significantly higher in the diabetic group than the controls and group 1 (P < .05). The patients in groups 1, 2, and 3 were significantly heavier than the controls (P <.05). Furthermore, we found that waist circumferences, SBP, DBP, TG, and HDL-C were not significantly different among the subgroups of MS; and these variables were statistically significantly higher compared with controls except for HDL-C, which was statistically significantly lower compared with controls (P < .05). Waist-to-hip ratio of the diabetic patients was statistically significantly higher than that of the patients in group 1 and the controls (P < .05); however, WHR of the diabetic patients was similar with that of the patients in group 2. As expected, the diabetic group showed higher FG, PPG, and HbA_{1c} compared with the other 3 groups (P = .000). In addition, the patients in group 2 had significantly higher levels of FG and PPG compared with patients in group 1 (P = .002 and P = .001, respectively) and controls (P = .000)and P = .000, respectively). In the subgroups of MS and the control group, platelet levels were similar, whereas leukocyte count was significantly lower (P < .05) in the control group compared with subgroups of the MS. Leukocyte count did

Table 5
Clinical and biochemical characteristics of the patients according to glucose tolerance status

	Controls $(n = 98)$	C I			P
		Group 1 (NGT; n = 89)	Group 2 (PDG; n = 61)	Group 3 (DM; n = 162)	
Age (y)	52.04 ± 10.31	51.44 ± 9.10	55.67 ± 9.88	56.89 ± 9.95	.000
BMI (kg/m ²)	25.45 ± 3.16	32.05 ± 5.43	31.40 ± 4.26	30.14 ± 5.28	.000
Waist (cm)					
Female	79.14 ± 6.50	96.12 ± 9.41	96.67 ± 10.34	96.99 ± 10.71	.000
Male	91.57 ± 6.35	104.76 ± 9.38	103.38 ± 7.92	100.09 ± 9.46	.000a
WHR	0.82 ± 0.08	0.87 ± 0.08	0.88 ± 0.06	0.91 ± 0.07	.000
SBP (mm Hg)	120.40 ± 13.29	127.02 ± 13.56	130.81 ± 12.32	129.87 ± 17.48	.000
DBP (mm Hg)	77.19 ± 9.16	81.62 ± 8.14	80.00 ± 8.26	79.72 ± 9.43	.009
FG (mg/dL)	90.05 ± 6.81	93.10 ± 7.59	110.27 ± 10.75	143.37 ± 43.80	.000
PPG (mg/dL)	98.56 ± 20.86	106.01 ± 18.31	139.19 ± 30.47	189.98 ± 76.95	.000
HbA _{1c} (%)	5.50 ± 0.49	5.68 ± 0.45	6.06 ± 0.49	7.55 ± 1.76	.000
TG (mg/dL)	90.77 ± 24.34	187.42 ± 117.88	180.14 ± 107.27	168.0 ± 90.02	.000
HDL	64.43 ± 14.00	49.03 ± 13.19	47.86 ± 12.76	46.60 ± 10.54	.000
WBC (×1000/mm ³)	6.54 ± 1.51	7.68 ± 2.07	7.60 ± 1.85	8.15 ± 2.41	.000
Platelets	262.88 ± 60.30	278.60 ± 73.25	271.18 ± 80.00	264.94 ± 78.84	.487
hs-CRP (mg/L)	2.03 ± 1.88	$3,94 \pm 3.51$	3.67 ± 4.00	$5,10 \pm 5.76$.000
sCD40 (ng/mL)	0.44 ± 0.42	0.86 ± 0.90	0.86 ± 0.66	0.86 ± 0.65	.000

Data are mean \pm SD. NGT indicates normal glucose tolerance; PDG, prediabetic group.

a Kruskal-Wallis.

Table 6
The mean hs-CRP and sCD40L levels of the patients according to their total number of components of the MS

	Controls	MS			P
	(n = 98)	3 Components (n = 196)	4 Components (n = 74)	5 Components (n = 42)	
hs-CRP (mg/L)	2.03 ± 1.88	$3.80 \pm 4.46^{\dagger}$	5.64 ± 5.60*, §	5.55 ± 5.25*	.000
sCD40 (ng/mL)	0.44 ± 0.42	0.84 ± 0.77 *	$0.82 \pm 0.64^{\ddagger}$	1.02 ± 0.65 *	.000

- * P = .000 compared with controls.
- † P = .006 compared with controls.
- ‡ P = .008 compared with controls.
- § P = .012 compared with subjects with 3 components.

not show any significant differences between groups 1, 2, and 3 (Table 5).

Table 6 displays the distribution of mean hs-CRP and sCD40L levels after patients were classified according to their total number of components of the MS. As shown, mean hs-CRP and sCD40L levels of those with 3, 4, and 5 characteristics of the MS were statistically significantly higher than the control subjects. Soluble CD40L levels were highest in subjects with 5 components of MS followed by subjects with 3 and 4 components of MS, but the differences did not reach statistical significance (Table 6).

Correlation between hs-CRP and sCD40L was determined by Pearson correlation test, and no correlation was found (r = 0.02, P = .705).

4. Discussion

Recent guidelines stress the importance of identifying individuals with the MS as a high-risk group for the development of CVD [4]. It has been reported that obesity, insulin resistance, and atherosclerosis are closely related phenomena in which low-grade inflammatory state and prothrombotic condition have pivotal roles [41]. In the present study, we have confirmed significantly higher levels of hs-CRP and sCD40L in patients with MS compared with controls. In addition, we have demonstrated positive correlations between BMI and both hs-CRP and sCD40L levels in MS patients. This finding, suggesting that obesity may promote CD40L overexpression, is consistent with the previous study demonstrating that sCD40L plasma values are elevated in obese men and decrease concomitantly with BMI reduction [23]. In addition, Schernthaner et al [29] have shown a marked decrease in circulating sCD40L after weight loss in morbidly obese patients. Previous studies have shown increased levels of CRP in patients with insulin resistance, atherosclerosis, and obesity [41,42]. In addition, decrease in the levels of CRP after weight loss was reported in these patients [9,15,43,44]. In our study, positive correlations between BMI and both hs-CRP and sCD40L levels suggest that BMI is an important determinant of a chronic inflammatory state in patients with MS.

We observed statistically significantly higher levels of WBC, which is another marker of inflammation, in MS patients compared with controls (P = .000). In patients with MS, both hs-CRP and sCD40L levels were closely related to WBC (P = .011 and P = .034; respectively) (Table 2). Our data support the opinion that MS is a chronic subclinical inflammatory disease as reflected by levels of WBC, hs-CRP, and sCD40L [8,36,41].

Although both men and women with MS had elevated hs-CRP and sCD40L in our study, women had higher values than men. This finding is in accordance with a recent study by Varo et al [28] who found that women with type 2 DM had higher values of sCD40L than men. Furthermore, Angelico et al [36] reported that women with MS had higher values of sCD40L than men with MS. The mechanism through which women with MS have higher values of hs-CRP and sCD40L than men is unknown and deserves further investigation. We thought that the sex difference in the plasma levels of hs-CRP and sCD40L in this study arises from the sex difference in the levels of BMI. Indeed, women were more obese than men in our study (Table 1, P = .000).

In our study, there was a statistically significant positive correlation between hs-CRP and BMI, waist circumference, FG, PPG, and HbA_{1c}, and negative correlation with HDL-C (Tables 2 and 3; Fig. 1A, B). In literature, CRP levels have been found to be positively correlated with BMI, TG, TC, LDL-C, insulin, FG, history of diabetes, age, smoking, blood pressure, waist and hip circumferences, and WHR, and negatively correlated with HDL-C [9,10,15,17,30,41-47]. In this study, our results were in accordance to previous reports. Herein, the positive correlation between the waist circumferences and hs-CRP shows the association between visceral abdominal obesity and chronic inflammation [46,48,49]. In literature, it is reported that visceral adipose tissue alone is a strong correlate of insulin resistance; and it is associated with increased cardiovascular morbidity and mortality [46,48-51].

Circulating sCD40L was believed to derive predominantly from platelets [20]. Consistent with this study, we found a significant correlation between the levels of sCD40L and platelets in patients with MS. In addition, Cipollone et al [25] showed an association between enhanced sCD40L and platelet activation in patients with hypercholesterolemia. In our study, the positive correlation between sCD40L and BMI supports the previous study by Davi et al [46] who demonstrated increased lipid peroxidation and platelet activation in obese women. The mechanism accounting for

CD40L expression by activated platelets is still unclear, but a recent study provided the first evidence that platelet O 2 production plays a key role in CD40L expression [52].

Consistent with previous reports, no significant association was found between the degree of diabetic control (HbA_{1c}) and the levels of sCD40L [28,53]. However, in a study by Jinchuan et al [27], a positive correlation was found between sCD40L and HbA_{1c}.

Although both sCD40L and CRP are inflammatory markers, we did not detect any association between the 2 proinflammatory markers in this study. Azar et al [54] found no correlation between hs-CRP and sCD40L levels in patients with coronary artery disease. Furthermore, Guldiken et al [30] found no correlation between hs-CRP and sCD40L levels in patients with different degrees of BMI.

In a study by Gokulakrishnan et al [37], diabetic subjects with MS had statistically significantly higher levels of sCD40L compared with nondiabetic subjects with MS. In contrast to this study, we found no statistically significant difference in the mean levels of WBC, hs-CRP, and sCD40L among the subgroups of MS according to glucose tolerance status. The atherosclerotic risk factors start operating even at the stage of prediabetes [9]. Choi et al [55] documented higher serum hs-CRP and WBC concentrations in subjects with IGT, indicating altered inflammatory markers in prediabetic stages. In this regard, this study is of interest because it reports increased levels of WBC, hs-CRP, and sCD40L not only in diabetic subjects with MS but also in prediabetic subjects and nondiabetic subjects with MS. This study suggests that MS patients have proinflammatory state independent of their glucose tolerance status.

In literature, a positive and statistically highly significant trend in CRP levels was observed with increasing number of components of the MS [16,17]. In this study, we could not find a gradual increase of the hs-CRP and sCD40L levels with the number of components of the MS probably because of the effect of medications in these patients. However, the present data demonstrate that, at all levels of severity of MS, patients have higher levels of inflammatory markers than the healthy controls.

The results of the previous studies indicated that blood pressure was directly related to both insulin resistance and insulin concentration [56,57]. Renin-angiotensin system may contribute to inflammatory process within the vascular wall and to the development of acute coronary syndromes [58]. In this study, we found no association between the levels of blood pressure and hs-CRP/sCD40L probably because of antihypertensive therapy of these patients. Because some medications have demonstrated to downregulate hs-CRP and sCD40L levels, we investigated the effect of ASA, lipid-lowering therapy, ACEIs/ARBs, and antidiabetics on hs-CRP and sCD40L concentration in patients with MS. Recent studies have demonstrated that ACEIs and ARBs have anti-inflammatory properties [59,60] and that they cause a significant reduction in the levels of CRP and sCD40L [61-64]. Acetylsalicylic acid has been

attributed to reducing levels of the CRP and sCD40L, although the evidence relating to the 2 markers is conflicting [31,65-67]. Beside the lipid-lowering effect, statins and fenofibrates seem to slow the progression of atherosclerosis through a series of anti-inflammatory effects, including a reduction of sCD40L and CRP [26,61-63,68-71]. In this study, we observed no significant association of hs-CRP and sCD40L with the use of ASA, lipid-lowering therapy, ACEIs/ARBs, or antidiabetics. However, the cross-sectional nature of our study did not allow us any interpretation about a drug effect.

5. Conclusion

We have demonstrated a significant increase of WBC, hs-CRP, and sCD40L levels in patients with MS compared with healthy controls, supporting the underlying inflammatory state in these patients. Identification of the MS is very important in the risk assessment and treatment of the patients. The effective administration of anti-inflammatory agents is only the beginning of a promising approach in the management of this syndrome. Therapeutic modalities that down-regulate CD40-CD40L interaction may represent a new therapeutic approach in these patients.

Acknowledgment

Project supported by the Dokuz Eylul University Research Foundation Accountancy (no. 04.KB.SAĞ.095).

References

- Eschwege E. The dysmetabolic syndrome, insulin resistance and increased cardiovascular (CV) morbidity and mortality in type 2 diabetes: aetiological factors in the development of CV complications. Diabetes Metab 2003;29:6S19-27.
- [2] Isomaa B, Almgren P, Tuomi T, et al. Cardiovascular morbidity and mortality associated with the metabolic syndrome. Diabetes Care 2001; 24:683-9.
- [3] Ginsberg HN. Treatment for patients with the metabolic syndrome. Am J Cardiol 2003;91(Suppl):29E-39E.
- [4] Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Executive summary of the third report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). JAMA 2001;19:2486-97.
- [5] Despres JP, Marette A. Relation of components of insulin resistance syndrome to coronary disease risk. Curr Opin Lipidol 1994;5:274-89.
- [6] Mitchell BD, Kammerer CM, Mahaney MC, et al. Genetic analysis of the IRS. Pleiotropic effects of gene influencing insulin levels on lipoprotein and obesity measures. Arterioscler Thromb Vasc Biol 1996; 16:281-8
- [7] Liese AD, Mayer-Davis EJ, Tyroler HA, et al. Familial components of the multiple metabolic syndrome: the ARIC Study. Diabetologia 1997; 40:963-70.
- [8] Fernandez-Real JM, Ricart W. Insulin resistance and chronic cardiovascular inflammatory syndrome. Endocr Rev 2003;24: 278-301.
- [9] Haffner SM. Insulin resistance, inflammation, and prediabetic state. Am J Cardiol 2003;92(Suppl):18J-26J.

- [10] Haverkate F, Thompson SG, Pyke SDM, et al. Production of C-reactive protein and risk of coronary events in stable angina. Lancet 1997;349: 462-6.
- [11] Pradhan AD, Ridker PM. Do atherosclerosis and type 2 diabetes share a common inflammatory basis? Eur Heart J 2002;23:831-4.
- [12] Yeh ETH, Anderson HV, Pasceri V, Willerson JT. C-reactive protein: linking inflammation to cardiovascular complications. Circulation 2001;104:974-5.
- [13] Pasceri V, Willerson JT, Yeh ETH. Direct proinflammatory effect of C-reactive protein on human endothelial cells. Circulation 2000;102: 2165-8.
- [14] Ridker PM, Hennekens CH, Buring JE, Rifai N. C-reactive protein and other markers of inflammation in the prediction of cardiovascular disease in women. N Engl J Med 2000;342:836-43.
- [15] Koenig W, Sund M, Fröhlich M, et al. C-reactive protein, a sensitive marker of inflammation, predicts future risk of coronary heart disease in initially healthy middle-aged men. Circulation 1999;99:237-42.
- [16] Ridker PM, Buring JE, Cook NR, Rifai N. C-reactive protein, the metabolic syndrome, and risk of incident cardiovascular events. Circulation 2003;107:391-7.
- [17] Frohlich M, Imhoe A, Berg G, et al. Association between C-reactive protein and features of metabolic syndrome. Diabetes Care 2000;23: 1835-9.
- [18] Schönbeck U, Libby P. The CD40/CD154 receptor/ligand dyad. Cell Mol Life Sci 2001;58:4-43.
- [19] Schönbeck U, Mach F, Libby P. CD154 (CD40 ligand). IJBCB 2000; 32:687-93.
- [20] Andre P, Nannizzi-Alaimo L, Prasad SK, Phillips DR. Platelet derived CD40 ligand. Circulation 2002;106:896-9.
- [21] Schönbeck U, Libby P. CD40 signaling and plaque instability. Circ Res 2001;89:1092-103.
- [22] Phipps RP. Atherosclerosis: the emerging role of inflammation and the CD40-CD40 ligand system. Proc Natl Acad Sci U S A 2000;97: 6930-2
- [23] Desideri G, Feri C. Effects of obesity and weight loss on soluble CD40L levels. JAMA 2003;289:1781-2.
- [24] Garlichs CD, John S, Schmeiβer A, et al. Upregulation of CD40 and CD40 ligand (CD154) in patients with moderate hypercholesterolemia. Circulation 2001;104:2395-400.
- [25] Cipollone F, Mezzetti A, Porreca E, et al. Association between enhanced soluble CD40L and prothrombotic state in hypercholesterolemia. Circulation 2002;106:399-402.
- [26] Semb AG, van Wissen S, Ueland T, et al. Raised serum levels of soluble CD40 ligand in patients with familial hypercholesterolemia: downregulatory effect of statin therapy. J Am Cardiol 2003;41: 275-9.
- [27] Jinchuan Y, Zonggui W, Jinming C, et al. Upregulation of CD40-CD40 ligand system in patients with diabetes mellitus. Clinica Chimica Acta 2004;339:85-90.
- [28] Varo N, Vicent D, Libby P, et al. Elevated plasma levels of the atherogenic mediator soluble CD40 ligand in diabetic patients. Circulation 2003;107:2664-9.
- [29] Schernthaner GH, Kopp HP, Krzyzanowska K, et al. Soluble CD40L in patients with morbid obesity: significant reduction after bariatric surgery. Eur J Clin Invest 2006;36:395-401.
- [30] Guldiken S, Demir M, Arikan E, et al. The levels of circulating markers of atherosclerosis and inflammation in subjects with different degrees of body mass index: soluble CD40 ligand and high-sensitivity C-reactive protein. Thromb Res 2007;119:79-84.
- [31] Aukrust P, Müler F, Ueland T, et al. Enhanced levels of soluble and membrane-bound CD40 ligand in patients with unstable angina. Circulation 1999;100:614-20.
- [32] Varo N, de Lemos JA, Libby P, et al. Soluble CD40L: risk prediction after acute coronary syndromes. Circulation 2003;108:1049-52.
- [33] Garlichs CD, Eskafi S, Raaz D, et al. Patients with acute coronary syndromes express enhanced CD40 ligand/CD 154 on platelets. Heart 2001;86:649-55.

- [34] Peng DQ, Zhao SP, Li YF, et al. Elevated soluble CD40 ligand is related to the endothelial adhesion molecules in patients with acute coronary syndrome. Clin Chim Acta 2002;319:19-26.
- [35] Schönbeck U, Varo N, Libby P, et al. Soluble CD40L and cardiovascular risk in women. Circulation 2001;104:2266-8.
- [36] Angelico F, Alessandri C, Ferro D, et al. Enhanced soluble CD40L in patients with the metabolic syndrome: relationship with in vivo thrombin generation. Diabetologia 2006;49:1169-74.
- [37] Gokulakrishnan K, Deepa R, Mohan V, et al. Soluble P-selectin and CD40L levels in subjects with prediabetes, diabetes mellitus, and metabolic syndrome-the Chennai Urban Rural Epidemiology Study. Metab Clin Exp 2006;55:237-42.
- [38] Lee WL, Lee WJ, Chen YT, et al. The presence of metabolic syndrome is independently associated with elevated serum CD40 ligand and disease severity in patients with symptomatic coronary artery disease. Metabolism 2006;55:1029-34.
- [39] Natal C, Restituto P, Inigo C, et al. The proinflammatory mediator CD40 ligand is increased in the metabolic syndrome and modulated by adiponectin. J Clin Endocrinol Metab 2008;93:2319-27.
- [40] American Diabetes Association A. Diabetes Care 2005;28(Suppl): S37-42.
- [41] Yudkin JS, Stehouwer CDA, Emeis JJ, Coppack SW. C-reactive protein in healthy subjects: associations with obesity, Insulin resistance, and endothelial dysfunction. Arterioscler Thromb Vasc Biol 1999;19:972-8.
- [42] Piche ME, Lemieux S, Weisnagel SJ, et al. Relation of high-sensitivity C-reactive protein, interleukin-6, tumor necrosis factor—alpha, and fibrinogen to abdominal adipose tissue, blood pressure, and cholesterol and triglyceride levels in healthy postmenopausal women. Am J Cardiol 2005;96:92-7.
- [43] Hak AE, Stehouwer CDA, Bots ML, et al. Associations of C-reactive protein with measures of obesity, insulin resistance, and subclinical atherosclerosis in healthy, middle-aged women. Arterioscler Thromb Vasc Biol 1999;19:1986-91.
- [44] McLaughlin T, Abbasi F, Lamendola C, et al. Differentiation between obesity and insulin resistance in the association with C-reactive protein. Circulation 2002;106:2908-12.
- [45] Esposito K, Pontillo A, Di Palo C, et al. Effect of weight loss and lifestyle changes on vascular inflammatory markers in obese women. JAMA 2003;289:1799-804.
- [46] Davi G, Guagnano MT, Ciabattoni G, et al. Platelet activation in obese women. JAMA 2002;288:2008-14.
- [47] Pickup JC, Crook MA. Is type II diabetes mellitus a disease of the innate immune system? Diabetologia 1998;41:1241-8.
- [48] Stolar MW, Chilton RJ. Type 2 diabetes, cardiovascular risk, and the link to insulin resistance. Clin Ther 2003;25(Suppl B):B4-B31.
- [49] Ross R, Aru J, Freeman J, Hudson R, Janssen I. Abdominal adiposity and insulin resistance in obese men. Am J Physiol Endocrinol Metab 2002;282:E657-63.
- [50] Despres JP. Abdominal obesity as important component of insulinresistance syndrome. Nutrition 1993;9:452-9.
- [51] Park KS, Rhee BD, Lee KU, et al. Intra-abdominal fat is associated with decreased insulin sensitivity in healthy young men. Metabolism 1991;40:600-3.
- [52] Pignatelli P, Sanguigni V, Lenti L, et al. gp91phox-dependent expression of platelet CD40 ligand. Circulation 2004;110:1326-9.
- [53] Lim HS, Blann AD, Lip GY. Soluble CD40 ligand, soluble P-selectin, interleukin-6, and tissue factor in diabetes mellitus: relationships to cardiovascular disease and risk factor intervention. Circulation 2004; 109:2524-8.
- [54] Azar RR, Badaoui G, Sarkis A, et al. Effects of tirofiban and statins on high-sensitivity C-reactive protein, interleukin-6, and soluble CD40 ligand following percutaneous coronary interventions in patients with stable coronary artery disease. Am J Cardiol 2005;95: 236-40.
- [55] Choi KM, Lee J, Lee KW, et al. Comparison of serum concentrations of C-reactive protein, TNF-α, and interleukin 6 between elderly

- Korean women with normal and impaired glucose tolerance. Diabetes Res Clin Pract 2004:64:99-106.
- [56] Reaven GM. Insulin resistance/compensatory hyperinsulinemia, essential hypertension, and cardiovascular disease. J Clin Endocrinol Metab 2003;88:2399-403.
- [57] Johnson D, Prud'homme D, Despres JP, et al. Relation of abdominal obesity to hyperinsulinemia and high blood pressure in men. Int J Obes Relat Metab Disord 1992;16:881-90.
- [58] Schieffer B, Schieffer E, Hilfiker-Kleiner D, et al. Expression of angiotensin II and interleukin 6 in human coronary atherosclerotic plaques. Circulation 2000;101:1372-8.
- [59] Dagenais GR, Pogue J, Fox K, et al. Angiotensin-converting–enzyme inhibitors in stable vascular disease without left ventricular systolic dysfunction or heart failure: a combined analysis of three trials. Lancet 2006;368:581-8.
- [60] Watanabe T, Barker TA, Berk BC. Angiotensin II and endothelium: diverse signals and effects. Hypertension 2005;45:163-9.
- [61] Han SH, Koh KK, Quon MJ, et al. The effects of simvastatin, losartan, and combined therapy on soluble CD40 ligand in hypercholesterolemic, hypertensive patients. Atherosclerosis 2007;190:205-11.
- [62] Koh KK, Quon MJ, Han SH, et al. Combined therapy with ramipril and simvastatin has beneficial additive effects on tissue factor activity and prothrombin fragment 1 + 2 in patients with type 2 diabetes. Atherosclerosis 2007;194:230-7.
- [63] Koh KK, Quon MJ, Han SH, et al. Additive beneficial effects of fenofibrate combined with candesartan in the treatment of hypertriglyceridemic hypertensive patients. Diabetes Care 2006;29:195-201.

- [64] Koh KK, Quon MJ, Han SH, et al. Anti-inflammatory and metabolic effects of candesartan in hypertensive patients. Int J Cardiol 2006;108: 96-100.
- [65] Nannizzi-Alaimo L, Alves VL, Phillips DR. Inhibitory effects of glycoprotein IIb/IIIa antagonists and aspirin on the release of soluble CD40 ligand during platelet stimulation. Circulation 2003; 107:1123-8.
- [66] Hermann A, Rauch BH, Braun M, et al. Platelet CD40 ligand (CD40L) —subcellular localization, regulation of expression, and inhibition by clopidogrel. Platelets 2001;12:74-82.
- [67] Steinhubl SR, Badimon JJ, Bhatt DK, et al. Clinical evidence for antiinflammatory effects of antiplatelet therapy in patients with atherothrombotic disease. Vasc Med 2007;12:113-22.
- [68] Wang TD, Chen WJ, Lin JW, et al. Efficacy of fenofibrate and simvastatin on endothelial function and inflammatory markers in patients with combined hyperlipidemia: relations with baseline lipid profiles. Atherosclerosis 2003;170:315-23.
- [69] Santini E, Madec S, Corretti V, et al. Effect of statins on soluble CD40 ligand in hypercholesterolemic Type 2 diabetic patients. J Endocrinol Invest 2008;31:660-5.
- [70] Chu CS, Lee KT, Lee MY, et al. Effects of atorvastatin and atorvastatin withdrawal on soluble CD40L and adipocytokines in patients with hypercholesterolaemia. Acta Cardiol 2006;61:263-9.
- [71] Chu CS, Lee KT, Lee MY, et al. Effects of rosiglitazone alone and in combination with Atorvastatin on nontraditional markers of cardiovascular disease in patients with type 2 diabetes mellitus. Am J Cardiol 2006;97:646-50.